
Manual

RPR-HF-APRS

www.robust-packet.net

Manual

update 2018-05-09 0800z

Index

Introduction	2
Bulletin Board	3
RPR-Network Europe	4
RPR-Frequencies Europe	5
HF-APRS Frequency Calculation	
HF-APRS Frequencies Worldwide	7
RPR-IGATE	8
UI-View	8
APRSIS32	9
SCS Tracker	17
RPR-MOBILE	18
UI-View	18
SCS Tracker	19
RPR – Theory	
RPR-users Europe	26
RPR-users outside Europe	

Introduction

The following are the results and preliminary status quos of an open exchange between the RPR users summarized in this manual.

It is the goal of Robust-Packet-Network to make Robust Packet Radio more popular within the HF-APRS community and to strengthen the network.

Here the focus is set on frequencies and broadcast times in the network, as well as configurations of digipeaters, mobile and fixed stations. Settings in UI-View and the SCS Tracker / DSP Module II are represented here as an example.

All given data and statements are matter of constant changes and will be varied towards the needs and requirements of all users.

www.robust-packet.net

Manual

update 2018-05-09 08002

Bulletin Board

• The Robust Packet Network has its own Multimode Reflector named XLX147 and its own DMR TG24098 Talkgroup

D-Star link via DCS147AL for main module is XLX147A. (XRF147AL & REF147AL possible as well) DMR TG24098 is linked to XLX147A and transcoding is provided by an AMBE3003USB. The motto behind the idea is:

" I see you on RPR-HF-APRS and can instantly talk to you!"

- The 60m band is available on frequency 5354.00 kHz USB.
- Latest SCS Tracker firmware & TRConfig is available here http://robust-packet.net/SCS-Tracker-Firmware.zip
- If you like to operate reciprocal between FSK and RPR please note the following. This operational mode of the SCS Trackers is called *alternate mode* or *mixed mode* by some hams. SCS Tracker's manual uses the term *toggle mode*. *Toggle mode* provides a power cut between beacons with a deaf receiver. The latest *dual mode* operates continuously on a main selected modulation. The beacon transmission then comes twice with the second one being the other modulation before jumping back to the main selected one. So, you can listen and transmit continuously on RPR but (as safeguard) transmit a FSK beacon on top.
- www.Robust-Packet.net is 'on air'. If you like to obtain an email address *callsign*@Robust-Packet.net feel free to request. An instant rerouting to your known standard email address would immediately be in effect. To make RPN more popular please consider to implement http://robust-packet.net in your Comment [%AC] (SCS Tracker) / Beacon Comment (UI-View). Since it is quiet long for 300 baud operation a 2m transmission would help as well.

Daily developments and **corrections** can be found online here! http://www.robust-packet.net/Robust-Packet-Network-Manual.pdf

www.robust-packet.net

Manua

update 2018-05-09 0800z

RPR-Network Europe

RPN2	RPN20 (Robust-Packet-Network on 20m)						
20 m	DB0UAL-10	•	non-standard 14102.00 kHz USB Bavaria	Gate/Digi RF-INT-RF H24			
				operational Gate/- RF-INT-RF HX			
20 m	PA3DFN-10	•	South Holland	operational			
RPN3	RPN30 (Robust-Packet-Network on 30m)						
30 m	DH8HP-1	•	North Rhine-Westphalia	Gate/- RF-INT-RF HX			
20	DV257.40	•	,	operational Gate/Digi RF-INT-RF H24			
30 m	DK2EZ-10	•	Hesse	operational			
30 m	EI5HBB-10	•	Kilkenny	Gate/- RF-INT-RF H24			
		•		operational Gate/Digi RF-INT-RF H12			
30 m	HB9ZF-10	•	Canton Zurich	operational			
30 m	IQ2LB-7	•	Lombardy	Gate/- RF-INT-RF H24			
30 111	IQZLD /	~	Lombardy	operational			
30 m	IR0UGN-10	•	Province of Rome	Gate/Digi RF-INT-RF H24 operational			
20	OESVUD	•		Gate/- RF-INT-RF H24			
30 m	OE3XUR	•	Lower Austria	operational			
30 m	OH6DL-10	•	Western Finland	Gate/DIGI* RF-INT-RF HX			
				[*DIGI: RPN1-1] operational Gate/DIGI* RF-INT-RF HX			
30 m	SA7SKY-10	•	Skåne	[*DIGI: RPN1-1] operational			
RPN4	0 (Robust-Packet-	Netw	ork on 40m)				
40 m	DK2EZ-10	•	Hesse	Gate/Digi RF-INT-RF H24			
10 111	DIVELE 10	•	11636	operational			
RPN6	0 (Robust-Packet-	Netw	ork on 60m)				
60 m	OH6DL-10	•	Western Finland	Gate/DIGI* RF-INT-RF HX			
	011002 10	•		[*DIGI: RPN1-1] operational			
60 m	SA7SKY-10	•	Skåne	Gate/DIGI* RF-INT-RF HX [*DIGI: RPN1-1] operational			
		•		Gate/Digi RF-INT-RF H24			
60 m	DK2EZ-13	•	Hesse	operational			
60 m	HB9ZF-10	•	Canton Zurich	Gate/Digi RF-INT-RF H24			
00 111	TIDJZI 10	~	Carton Zanch	operational			
RPN8	0 (Robust-Packet-	Netw	ork on 80m)				
80 m	DB0UAL-10	•	Bavaria	Gate/Digi RF-INT-RF H24			
55 111	2200,1210	•		operational			
80 m	HB9ZF-10	•	Canton Zurich	Gate/Digi RF-INT-RF HN operational			
	I			oper actional			

[•] H24 = 24 hours operation • H12 = except night hours • HX = variable times / on request • HN = night times

Comment

The interest in operating specific frequencies are as widely spread as the applications the users prefer.

Long-distance travellers focus 20 & 30 m band. Within Europe 80 m is regarded as a valuable band as well. First it means that HF-APRS activities are not over after sunset and second it lets participate lower class licensed hams. Long —distance mobile stations may claim antenna

www.robust-packet.net

Manual

update 2018-05-09 0800z

problems but in an area between 500-1000 km even short monoband antennas have shown excellent results.

Agreement among all hams is not to lose each other on too many different frequencies. Anyway new activities raised up on 40 m. After changing IARU bandplan towards 7000-7200 kHz the digimode part in the IARU Region 1 went up as well. Till now no new specific frequencies have been announced. In order to stay clear of the CW area the new frequencies 7047.30 kHz USB for RPR respectively 7047.60 kHz USB for FSK (HFP) have been developed. Efforts to find a worldwide 40 m frequency failed due to IARU bandplan differences.

In theory there are APRS frequencies existing as well in the 10 m, 15 m and 17 m areas but no gate or digipeater infrastructure is to be found there. So in order to concentrate activities those frequencies are no longer mentioned in this document.

RPR-Frequencies Europe

20 m	14103.30 kHz	USB	DB0UAL 14102.00 kHz USB
30 m	10147.30 kHz	USB	
40 m	7047.30 kHz	USB	
60 m	5354.00 kHz	USB	
80 m	3610.00 kHz	USB	

Comment

14103.30 kHz USB – This frequency has become the second strongest frequency in use behind 30m. In order to exchange longpaths and intercontinental in general 20m it of great use.

10147.30 kHz USB — The only really common frequency worldwide including sideband selection. FSK frequency is 10.147,60 kHz USB and TOOGLE-MODE is possible as well.

7047.30 kHz USB – The specific Dial-QRG is a good reminder reflecting the 30 m one and fulfils the conditions according the IARU Region 1 bandplan.

5354.00 kHz USB – The latest frequency is in operation since 2017. Experience all still collected but it seems to be day & night usable.

3610.00 kHz USB – The traditional frequency from Bavaria. For years DB0UAL(-10) has done a reliable job single handily. Meanwhile a wider interest is aroused. Especially after sunset many stations join a 'fly-in'. Since no specific path setting for DB0UAL(-10) is required any longer other gates enjoy the interaction.

Robust Packet Network www.robust-packet.net

Manual

HF-APRS Frequency Calculation

	HF-APRS Dial Frequency Calculation RPR ⇔ FSK						
			Tone Frequencies 1600/	1800			
	Region	RPR	USB=300 Hz lower than FSK	FSK	USB=300 Hz higher than RPR	side band	
20 m	Europe		14103.30 kHz		14103.60 kHz	USB	
30 m	worldwide		10147.30 kHz		10147.60 kHz	USB	
40 m	Europe		7047.30 kHz		7047.60 KHZ	USB	
60m	Europe		5354.00 kHz		5354.30	USB	
80 m	Europe		3610.00 kHz		3610.30 kHz	USB	
	= no usage BOLD = active usage						
www	www.robust-packet.net/tipsandtricks/HF-APRS-Frequency-Calculation.pdf for details						

Own Station

	HF-APRS Dial Frequency Calculation RPR ⇔ FSK Tone Frequencies /						
	Band RPR USB=300 Hz lower than FSK FSK USB=300 Hz higher than RPR bard bar						
20 m			141 kHz		141 kHz	USB	
30 m			101 kHz		101 kHz	USB	
40 m			70 kHz		70 kHz	USB	
60 m			53 kHz		53 kHz	USB	
80 m			36 kHz		36 kHz	USB	

update 2018-05-09 0800z

HF-APRS Frequencies Worldwide

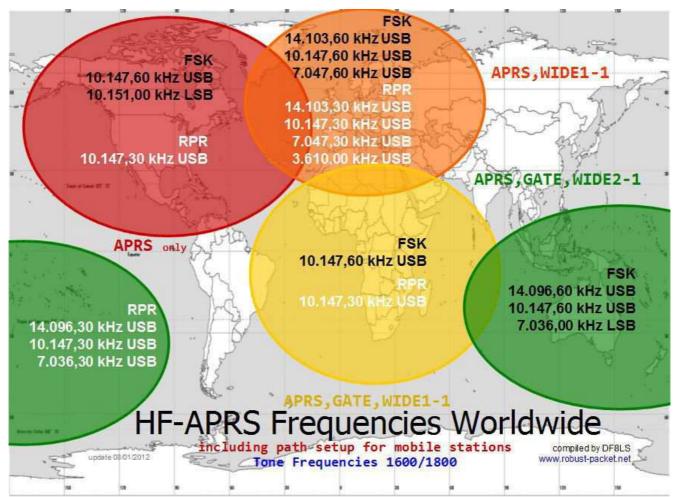


chart as download image under www.robust-packet.net/hf-aprs-worldwide-chart.html

Comment

North America (red) Main activities take place on the 30 m band. No further information could be found so far concerning the other bands. According to WA8LMF the density of gates in North America is such high that digipeating is undesirable. A point of view that can be found in Europe as well. Anyway we have to keep on mind that i.e. mobile stations with a distance of 100-200 km to each other would never learn their proximity. With flat tires in the middle of nowhere digipeating then gets a different touch...

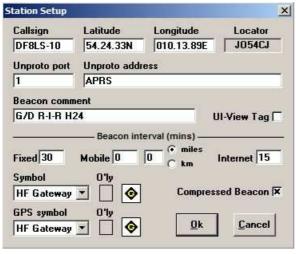
When RPR traffic starts now in North America a path APRS,WIDE1-1 is recommended. FSK (HFP) traffic does not encounter any influence by RPR!

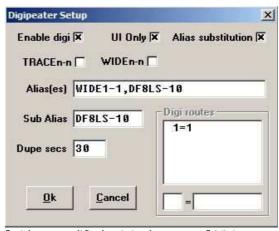
Europe (orange) – see comment on previous page

Africa (yellow) Only activities observed are on the 30 m band. It is known that RPR gates are offered as well. Whether that is upon request and therefore temporary only is matter of survey.

Oceania (green) – Driving force when it comes to HF-APRS are the Australian hams. Specifics here are the different frequencies on 20 m & 40 m compared to Europe and different side band

www.robust-packet.net


Manual


selection as well. The historical development doing HF-APRS came by the usage of old commercial radios. Those provided only USB and so 20 m was kept USB ever since. Shown RPR frequencies are theoretical entries only for the time being but hams down there are highly interested to enter the community of robust packet users.

General statement about path setting in South Africa and Australia – In those areas gating to the internet takes place via crossgating to the VHF-net. So by using GATE and then WIDEN-n results in the necessary hops to the VHF IGATE.

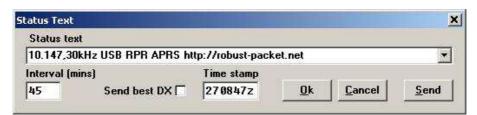
RPR-IGATE

UI-View

[with unmodified original program] Visit http://sa7sky.net/newn-n-paradigm-english.html

Beacon Comment – Service Code

features


- **G/D G**ate & **D**igi available
- -/D Digi only
- **G/- G**ate only

connectivity

- **R-I-R** Radio ⇒Internet ⇒Radio connection
- Radio ⇒Internet only
- Radio only / no internet i.e. Digi/p R time table

- H24 24 hours operation
- H12 except night hours
- HX variable times / on request
- HN night times

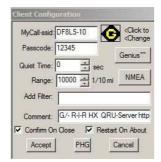
www.robust-packet.net

Manual

update 2018-05-09 0800z

SCS-Tracker	UI-View	aprs.fi - presentation
Comment [%AC] under APRS Settings	Beacon Comment under Station Setup	Comment text 1. line (green) in the bubble http:// and mailto: links are always blue mobiles show this in moving list http://aprs.fi/moving/
Report Text [%AR] under APRS Settings	Status Text under Status Text	Status message 2. line (magenta) in the bubble http:// und mailto: links are always blue not shown in the moving list

Result in the internet


APRSIS32

There are no specific entries to be done in the menus of the APRSIS32 program to operate RPR with the SCS Tracker. Even the 300 bauds are automatically selected as configured in the tracker itself when entering the KISS mode.

To reach the KISS mode you first create a new port with KISS as choice. The name 'SCS' is free selectable.

Then you exchange directly in the XML file anything between <OpenCmd> ... and ... </CloseCmd> with the actual example below. This is done straight with the txt editor. If you wish to digipeat this is done in the XML as well in the line **after the very last radio port** !!! you created. (see example)

Menu Setting

Range maximum is 1000 mi / 1609 km Under Add Filter you may enter callsigns that go beyond that range i.e. b/KJ4ERJ*

Comment may be changed here as well

www.robust-packet.net

Manua

<!--RFPort[1]-->

update 2018-05-09 0800z

Crucial to the function as GATE is the tick in **RF to IS**. Whoever is ticking **IS to RF** becomes a bidirectional IGATE, though APRS-IS is configured in the same manner.

Without the **RF to IS** setting here in APRS-IS gating would not work. Corresponding **IS to RF** when the bidirectional function is desired. Don't forget to enable, either here or in the menu of the program.

SCS Tracker KISS Mode & Digipeating - XML file

<!--RFPort[0]--> check your values! <RFPort Name="10.1473"> using this port name here i.e. for 30m results in DX reports incl. valid frequency <Protocol>KISS</Protocol> <Device>COM6:38400,N,8,1</Device> check your values! <RfBaud>300</RfBaud> <OpenCmd>^027~!!0</OpenCmd> <OpenCmd>^064^075!!0</OpenCmd> <CloseCmd>^192^255^192~!!1</CloseCmd> <CloseCmd>^027~!!0</CloseCmd> <QuietTime>0</QuietTime> <Enabled>1</Enabled> <XmitEnabled>1</XmitEnabled> <ProvidesNMEA>1</ProvidesNMEA> <RFtoISEnabled>1</RFtoISEnabled> <IStoRFEnabled>1</IStoRFEnabled> <MyCallNot3rd>0</MyCallNot3rd> <BeaconingEnabled>1</BeaconingEnabled> <BeaconPath></BeaconPath> <BulletinObjectEnabled>1</BulletinObjectEnabled> <DXEnabled>0</DXEnabled> <DXPath>RFONLY</DXPath> <MessagesEnabled>1</MessagesEnabled> <MessagePath></MessagePath> <TelemetryEnabled>0</TelemetryEnabled> <TelemetryPath></TelemetryPath><!--DigiXform--> do N O T change this line (under development) </RFPort> <!--RFPort[0]--> check your values! <!--RFPort[1]--> check your values! <RFPort Name="... <!--DiaiXform--> do N O T change this line (under development) </RFPort>

<!--DigiXform--> exchange this line with <DigiXform>WIDE1-1=WIDE1*</DigiXform> if you wish to digipeat. Otherwise leave it untoughed.

check your values!

www.robust-packet.net

Manual

update 2018-05-09 0800z

Using the settings mentioned above lets the SCS Tracker easily enters KISS mode and exits back to stand alone operation. Anyhow, when restarting APRSIS32 it is vital to switch the tracker powerless for a second (under investigation).

SCS PTC-IIIusb / PTC-IIusb / TRXPTC KISS Mode - XML file

```
<!--RFPort[0]-->
                                             check your values!
<RFPort Name="10.1473"> using this port name here i.e. for 30m results in DX reports incl. valid frequency
<Protocol>KISS</Protocol>
<Device>COM6:38400,N,8,1
                                             check your values!
<RfBaud>300</RfBaud>
<OpenCmd>^027~!!1</OpenCmd>
<OpenCmd>^M~!!1</OpenCmd>
<OpenCmd>QUIT!cmd:</OpenCmd>
<OpenCmd>PSKA 250</OpenCmd>
                                             check your values!
<OpenCmd>TONES 2</OpenCmd>
<OpenCmd>TRX Frequency 10147.3</OpenCmd>
<OpenCmd>PAC!pac:</OpenCmd>
<OpenCmd>BAUD r300!pac:</OpenCmd>
<OpenCmd>^064^075!!0</OpenCmd>
<CloseCmd>^192^255^192~!!2</CloseCmd>
<CloseCmd>^M~!pac:!1</CloseCmd>
<CloseCmd>QUIT!cmd:</CloseCmd>
<QuietTime>0</QuietTime>
<Enabled>1</Enabled>
<XmitEnabled>1</XmitEnabled>
<ProvidesNMEA>1</ProvidesNMEA>
<RFtoISEnabled>1</RFtoISEnabled>
<IStoRFEnabled>1</IStoRFEnabled>
<MyCallNot3rd>0</MyCallNot3rd>
<BeaconingEnabled>1</BeaconingEnabled>
<BeaconPath></BeaconPath>
<BulletinObjectEnabled>1</BulletinObjectEnabled>
<DXEnabled>0</DXEnabled>
<DXPath>RFONLY</DXPath>
<MessagesEnabled>1</MessagesEnabled>
<MessagePath></MessagePath>
<TelemetryEnabled>0</TelemetryEnabled>
<TelemetryPath></TelemetryPath>
<!--DigiXform-->
</RFPort>
<!--RFPort[0]-->
                                             check your values!
```

www.robust-packet.net

Manual

undate 2018-05-09 08002

SCS PTC-II & PTC-IIpro (with DSP-II module at port 1) KISS Mode - XML file

```
<!--RFPort[0]-->
                                                   check your values!
<RFPort Name="10.1473"> using this port name here i.e. for 30m results in DX reports incl. valid frequency
<Protocol>KISS</Protocol>
<Device>COM6:38400,N,8,1
                                                  check your values!
<RfBaud>300</RfBaud>
<OpenCmd>^027~!!1</OpenCmd>
<OpenCmd>^M~!!1</OpenCmd>
<OpenCmd>O!cmd:</OpenCmd>
<OpenCmd>RESET!cmd:</OpenCmd>
<OpenCmd>TONES 4!cmd:</OpenCmd>
<OpenCmd>BRIGHT 6!cmd:</OpenCmd>
<OpenCmd>FSKA 450!cmd:</OpenCmd>
                                                   check your values!
<OpenCmd>PSKA 550!cmd:</OpenCmd>
                                                   check your values!
<OpenCmd>PAC TXL AFSK 800!cmd:</OpenCmd>
                                                   check your values!
<OpenCmd>PAC!pac:!2</OpenCmd>
<OpenCmd>USER 0!pac:!1</OpenCmd>
<OpenCmd>PRBOX 0!pac:!1</OpenCmd>
<OpenCmd>BAUD R300!pac:!1</OpenCmd>
<OpenCmd>^064^075!!0</OpenCmd>
<CloseCmd>^192^255^192~!!2</CloseCmd>
<CloseCmd>^M~!pac:!1</CloseCmd>
<CloseCmd>Q!cmd:</CloseCmd>
<CloseCmd>BRIGHT 1!cmd:</CloseCmd>
<QuietTime>0</QuietTime>
<Enabled>1</Enabled>
<XmitEnabled>1</XmitEnabled>
<ProvidesNMEA>1</ProvidesNMEA>
<RFtoISEnabled>1</RFtoISEnabled>
<IStoRFEnabled>1</IStoRFEnabled>
<MyCallNot3rd>0</MyCallNot3rd>
<BeaconingEnabled>1</BeaconingEnabled>
<BeaconPath></BeaconPath>
<BulletinObjectEnabled>1</BulletinObjectEnabled>
<DXEnabled>0</DXEnabled>
<DXPath>RFONLY</DXPath>
<MessagesEnabled>1</MessagesEnabled>
<MessagePath></MessagePath>
<TelemetryEnabled>0</TelemetryEnabled>
<TelemetryPath></TelemetryPath>
<!--DigiXform-->
</RFPort>
<!--RFPort[0]-->
                                                   check your values!
```

www.robust-packet.net

Manual

update 2018-05-09 0800z

SCS PTC-IIex KISS Mode - XML file

```
<!--RFPort[0]-->
                                             check your values!
<RFPort Name="10.1473"> using this port name here i.e. for 30m results in DX reports incl. valid frequency
<Protocol>KISS</Protocol>
<Device>COM6:38400,N,8,1
                                             check your values!
<RfBaud>300</RfBaud>
<OpenCmd>^027~!!1</OpenCmd>
<OpenCmd>^M~!!1</OpenCmd>
<OpenCmd>Q!cmd:</OpenCmd>
<OpenCmd>TONES 4!cmd:</OpenCmd>
<OpenCmd>BRIGHT 6!cmd:</OpenCmd>
<OpenCmd>PSKA 250!cmd:
OpenCmd> check your values! (only diffence to PTC-II & IIpro)
<OpenCmd>PAC!pac1:</OpenCmd>
<OpenCmd>USER 0!pac1:</OpenCmd>
<OpenCmd>PRBOX 0!pac1:</OpenCmd>
<OpenCmd>BAUD R300!pac1:</OpenCmd>
<OpenCmd>^064^075!!0</OpenCmd>
<CloseCmd>^192^255^192~!!2</CloseCmd>
<CloseCmd>^M~!pac1:!1</CloseCmd>
<CloseCmd>O!cmd:</CloseCmd>
<QuietTime>0</QuietTime>
<Enabled>1</Enabled>
<XmitEnabled>1</XmitEnabled>
<ProvidesNMEA>1</ProvidesNMEA>
<RFtoISEnabled>1</RFtoISEnabled>
<IStoRFEnabled>1</IStoRFEnabled>
<MyCallNot3rd>0</MyCallNot3rd>
<BeaconingEnabled>1</BeaconingEnabled>
<BeaconPath></BeaconPath>
<BulletinObjectEnabled>1</BulletinObjectEnabled>
<DXEnabled>0</DXEnabled>
<DXPath>RFONLY</DXPath>
<MessagesEnabled>1</MessagesEnabled>
<MessagePath></MessagePath>
<TelemetryEnabled>0</TelemetryEnabled>
<TelemetryPath></TelemetryPath>
<!--DigiXform-->
</RFPort>
<!--RFPort[0]-->
                                             check your values!
```

www.robust-packet.net

Manual

update 2018-05-09 0800z

SCS P4dragon KISS Mode - XML file

```
<!--RFPort[0]-->
                                            check your values!
<RFPort Name="10.1473"> using this port name here i.e. for 30m results in DX reports incl. valid frequency
<Protocol>KISS</Protocol>
<Device>COM2:38400,N,8,1
                                            check your values!
<RfBaud>300</RfBaud>
<OpenCmd>^027~!!1</OpenCmd>
<OpenCmd>^M~!!1</OpenCmd>
<OpenCmd>Q!cmd:</OpenCmd>
<OpenCmd>TONES 4!cmd:</OpenCmd>
<OpenCmd>BRIGHT 6!cmd:</OpenCmd>
<OpenCmd>PAC!pac:</OpenCmd>
<OpenCmd>PRBOX 0!pac:</OpenCmd>
<OpenCmd>PRPort 1!pac:</OpenCmd>
<OpenCmd>USER 0!pac:</OpenCmd>
<OpenCmd>BAUD R300!pac:</OpenCmd>
<OpenCmd>TXLevel R 170!pac:
                                            check your values!
<OpenCmd>^064^075!!0</OpenCmd>
<CloseCmd>^192^255^192~!!2</CloseCmd>
<CloseCmd>^M~!pac:!1</CloseCmd>
<CloseCmd>Q!cmd:</CloseCmd>
<QuietTime>0</QuietTime>
<Enabled>1</Enabled>
<XmitEnabled>1</XmitEnabled>
<ProvidesNMEA>0</ProvidesNMEA>
<RFtoISEnabled>0</RFtoISEnabled>
<IStoRFEnabled>0</IStoRFEnabled>
<MyCallNot3rd>0</MyCallNot3rd>
<NoGateME>0</NoGateME>
<BeaconingEnabled>1</BeaconingEnabled>
<BeaconPath>WIDE1-1</BeaconPath>
<BulletinObjectEnabled>1</BulletinObjectEnabled>
<DXEnabled>0</DXEnabled>
<DXPath>WIDE1-1</DXPath>
<MessagesEnabled>1</MessagesEnabled>
<MessagePath>WIDE1-1</MessagePath>
<TelemetryEnabled>0</TelemetryEnabled>
<TelemetryPath>WIDE1-1</TelemetryPath>
<!--DigiXform-->
</RFPort>
<!--RFPort[0]-->
                                            check your values!
```

www.robust-packet.net

Manual

undate 2018-05-09 08002

AGW Packet Engine with SCS Tracker, PTC-IIseries, PTC-IIIseries, TRXPTC & P4dragon * - XML file

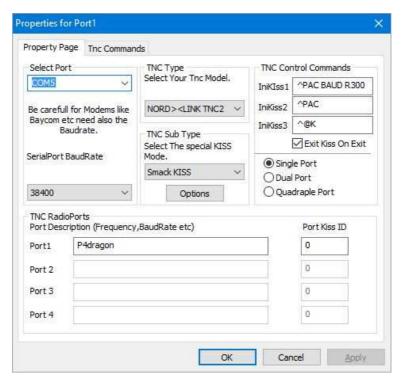
```
<!--RFPort[0]-->
                                                 check your values!
<RFPort Name="10.1473"> using this port name here i.e. for 30m results in DX reports incl. valid frequency
<Protocol>AGW</Protocol>
<Device>@localhost:8000</Device>
<RfBaud>300</RfBaud>
<!--OpenCmd-->
<!--CloseCmd-->
<QuietTime>0</QuietTime>
<Enabled>1</Enabled>
<XmitEnabled>1</XmitEnabled>
<ProvidesNMEA>0</ProvidesNMEA>
<RFtoISEnabled>0</RFtoISEnabled>
<IStoRFEnabled>0</IStoRFEnabled>
<MyCallNot3rd>0</MyCallNot3rd>
<NoGateME>0</NoGateME>
<BeaconingEnabled>1</BeaconingEnabled>
<BeaconPath>WIDE1-1</BeaconPath>
<BulletinObjectEnabled>1</BulletinObjectEnabled>
<DXEnabled>0</DXEnabled>
<DXPath>RFONLY</DXPath>
<MessagesEnabled>1</MessagesEnabled>
<MessagePath></MessagePath>
<TelemetryEnabled>0</TelemetryEnabled>
<TelemetryPath></TelemetryPath>
<!--DigiXform-->
</RFPort>
<!--RFPort[0]-->
                                                 check your values!
```

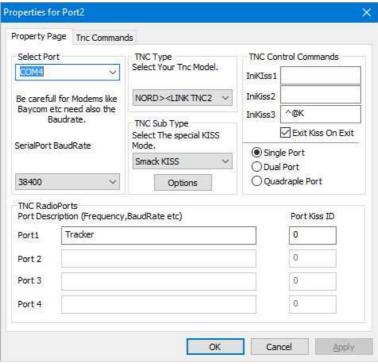
remark by SV1UY

All PTC-IIseries (except PTC-IIe which does not support RPR or PTC-II without the DSP+board/Extra RAM), PTC-IIIseries, TRXPTC and P4dragons should be setup as "NORD><LINK TNC2" Modems and use SMACK KISS Protocol in Packet Engine, Free or Pro. Then in Packet Engine's Setup, Radio Port Manager, Edit Radio Port, Property Page, TNC Control Commands: InitKiss1 field type "^PAC BAUD R300" without the quotes. In InitKiss2 filed type "^PAC" again without the quotes and leave InitKiss3 as is.

SCS Trackers should also be setup as a "NORD><LINK TNC2" Modems using SMACK KISS Protocol in Packet Engine, Free or Pro but in Packet Engine's Setup, Radio Port Manager, Edit Radio Port, Property Page, TNC Control Commands: InitKiss1 and InitKiss2 should be left blank if you are using an SCS Tracker and again leave InitKiss3 as is.

See next page for setup examples

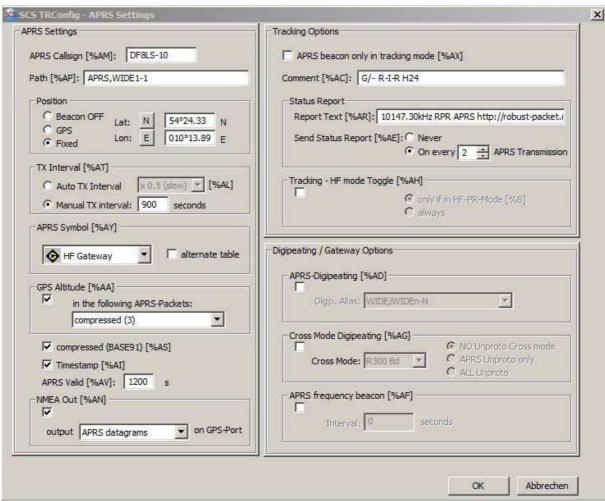

^{*}except PTC-II without DSP+ board/Extended RAM & PTC-IIe which do not support RPR

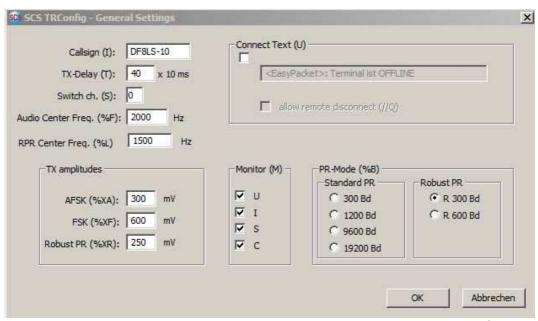

www.robust-packet.net

Manual

update 2018-05-09 0800z

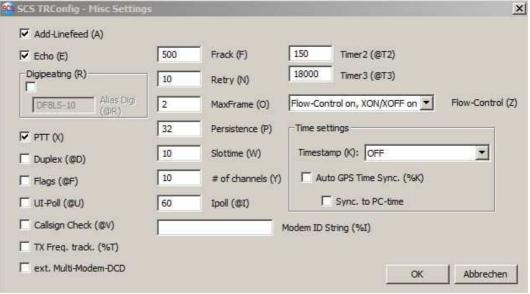
(continue) remark by SV1UY




Manual

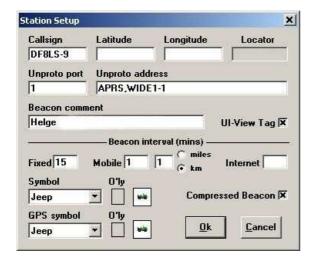
update 2018-05-09 0800z

SCS Tracker



TRConfig Version 1.0.1.55

TRConfig Version 1.0.1.55


Robust Packet Network www.robust-packet.net Manual update 2018-05-09 0800z

TRConfig Version 1.0.1.55

RPR-MOBILE

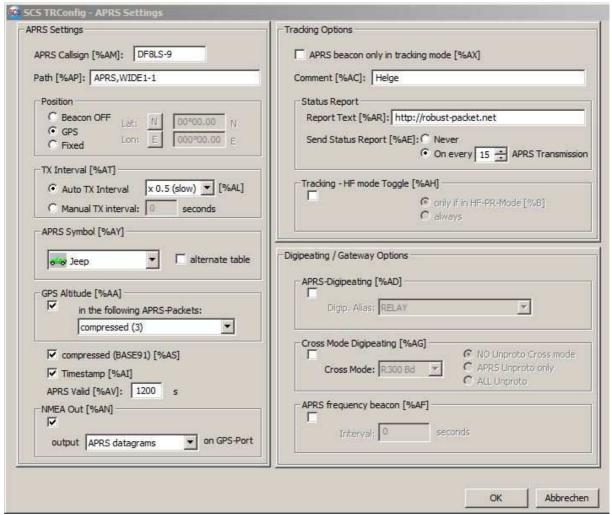
UI-View

Comment

After longer discussions about pros and cons of digipeating the European answer is a YES for mobile stations and a NOT-NECESSARELY for gates & digis. But unlike 2 m operation the path should be set to WIDE1-1 allowing a single hop (reminds old ECHO).

www.robust-packet.net

Manual

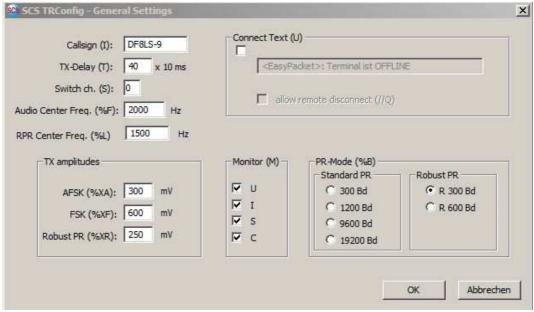

update 2018-05-09 0800z

In case of difficult HF propagation conditions Status Text should be avoided or set to a high time interval.

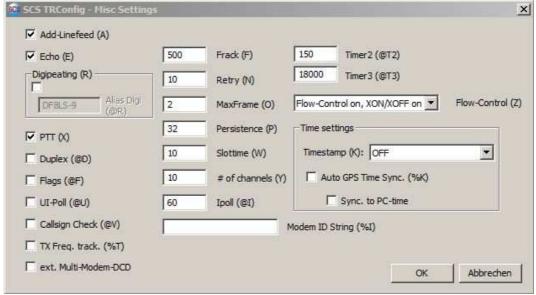
Crosspeater operation (according to DF8HL)

Some Hardware i.e. Yaesu VX-8 have unproto addresses not starting with AP... Meaning that not even the first two letters are AP (except under specific circumstances) but more or less random ones. When hiking through the remote wilderness or doing a trip by canoe some hams use their mobile station as crossdigipeater and mode changer from 2m-FSK to HF-RPR. In order to pass even those non-AP... addresses digipeaters and gates should independently of all formats digipeat and igate anything they receive if the path holds in first place a not yet digipeated ALIAS like WIDE1-1 or the digipeaters station callsign.

SCS Tracker



TRConfig Version 1.0.1.55


www.robust-packet.net

Manual

update 2018-05-09 0800z

TRConfig Version 1.0.1.55

TRConfig Version 1.0.1.55

SCS PTC-IIIusb & APRSdroid via Bluetooth Init string for TNC KISS

pska 800 tones 4 pac baud r300 kiss check your values!

www.robust-packet.net

Manual

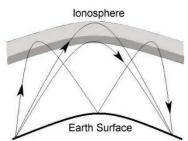
update 2018-05-09 0800z

compiled by DH1TI translated by SA7SKY

RPR – Theory

Why RPR-APRS?

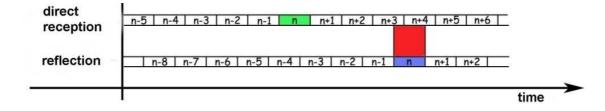
Till now APRS-operation on shortwave was done by ordinary HF-packets (FSK 300 bd). Now what makes the difference towards RPR?


To answer that question we initially focus the properties of HF-channels and the specialties when transmitting digital signals via shortwave.

Properties of an HF-Channel

small bandwidth (< 3kHz) - multipath propagation - phase shift - band noise and other disturbances - fading - constant fluctuating conditions

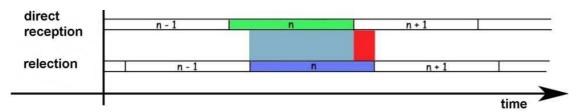
HF-transmission of digital signals


When transmitting digital signal via radio by using single carriers you nearly always encounter problems on shortwave by multipath propagation.

Run-time differences caused by multipath propagation

A signal reaches the receiver via different ways. The different paths a signal has taken results in different delays of that signal. So a mixture of direct signals meet time-shifted and reflected echoed signals.

The effect of this mixture is shown in following figure.

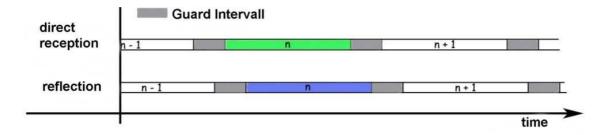

Intersymbol-Interference by run-time distortion

This is a symbolic representation of the contents received. It is demonstrated that reflected signal are received such late that they put heavy influence on the direct signals.

Superposition following symbols by echoed preceded symbols are called Intersymbol-Interference (ISI). Under typical shortwave conditions a symbol will influence samples that follow.

Robust Packet Network www.robust-packet.net Manual update 2018-05-09 0800z

To gentle the effect of ISI with the old FSK packets the length of symbols was prolonged (reduction to 300 bd). This leaded to an improvement of the relation between duration of a symbol and its echo. You simply allow the echo more time to fade.


Improvement by extension of symbol length

But it is obvious that symbols which follow are still broken by reflection of the preceding onces. Even when reducing to 300 bd time is still too short to cover the effects of multi pathing on shortwave.

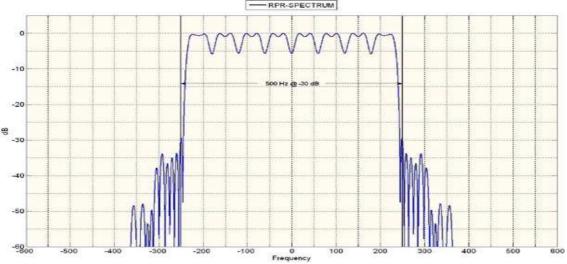
How can RPR do better?

The solution for the ISI problem is known since the 50th and has been used by military services for shortwave operation. It is the Multicarrier System. You take benefit of the Time-Bandwidth Product (TBP): data stream is distributed to several subcarriers. Instead of transmitting symbols successively in sequence now multiple and longer symbols are on air. The more subcarriers are used the longer the symbol can be. This method is called Frequency Division Multiplex (FDM).

Despite this improvement of symbol duration-to-echo relation still ISI may interfere. To encounter that a pause is inserted behind each symbol. This protective break is called Guard Intervall.

www.robust-packet.net

Manual


update 2018-05-09 0800z

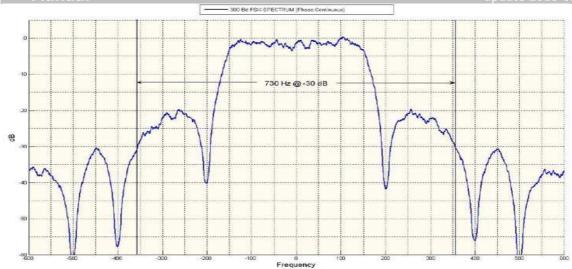
Elimination of Intersymbol-Interference by usage of Guard Interval

The echo is now allowed to fade during the Guard Interval without breaking symbols that follow. Data stream ratio is nearly not effected but robustness against ISI substantially improved.

Anyway it is easy to imagine that realization of this method takes technical extravagance. To separate the single subcarriers steep edge filters are needed.

That is why RPR uses a method called Orthogonal Frequency Division Multiplex (OFDM). Supported by digital signal processing steep edge filters are no longer required. RPR works with 8 subcarriers with a 60 Hz tone gap. Average symbol length jumps to 20 ms in comparison to FSK with 3,3 ms. Without a doubt RPR can be called a multipath capable procedure appropriate for shortwave operation.

Spectrum of RPR (graphic OE3MZC)


Regardless the 8 subcarriers spectrum of RPR is not wider than those ones of FSK300. The opposite is true: bandwidth is just 500 Hz.

In comparison find the FSK300 (old HF-packet) spectrum below. Bandwidth is significantly greater with a value of 730 Hz.

www.robust-packet.net

Manual

update 2018-05-09 0800z

Spectrum of FSK300 (graphic OE3MZC)

The Problem of Channel Coding

Beside the discussed ISI multipath problem other uncertainties appear with APRS AX.25 and FSK operation: the missing channel coding.

In normal FSK-packet-radio-operation (same on VHF/UHF) a receiver rejects an error packet and requests a new transmission. Regarding the CRC-Checksum which is attached, an error packet is detected. This method is called ARQ (Automatic Repeat reQuest). It works fine with Packet Radio but when operating APRS this AX.25 automated request mechanism is override since we are transmitting <u>unprotocolled</u> (unproto) packets.

Just a tiny crack in the data packet makes it unusable. Receivers would detect it as an error packet and dump it. A lost transmission.

But even here RPR offers the solution with a suitable channel coding. This channel coding allows receiver not only to detect an error but – up to a certain degree – to correct those themselves. This is possible by targeted reconstruction data included in the package (Forward Error Correction). This method is good to correct single bit errors like caused by lightning and tiny band noise cracks.

But what happens when hole burst errors appear and complete blocks of related bits are lost? Not only 1 bit but i.e. a 10 bits group goes down the drain!? That cannot be corrected any more.

The trick then is the such called Interleaving: originally subsequent bits are scrabbled before transmission in such manner that they do not appear in their chronological order in the data block any longer.

Interleaving now produces out of 1 burst error a greater amount of single bit errors which then can be put together again by the Forward Error Correction.

In this way APRS-packets are protected effectively against transmission failures respectively in many cases can even be "repaired" by the receiving device.

Robust Packet Network www.robust-packet.net

Manual

intentionally left blank for editorial reasons

Robust Packet Network www.robust-packet.net

Manual

RPR-users Europe

[85]			CCS7 / DMR-ID [46]	[32]
Callsign	Operation	Remarks	email mobile	WLNK
DB1CH	RX gate	Christof	db1ch@gmx.de 2637149	no
DB2HTA	stationary	Herbert (Herby)	db2hta@yahoo.com	X
DC2WH	mobile, stationary	Ralf	dc2wh@darc.de	no
DC5KW	stationary	Hilmar	dc5kw@darc.de 2624357	no
DC6VA	stationary	Nicolai	dc6va@darc.de	no
DC7WOL	RX gate, digi	Wolfgang sysop DB0UAL	dc7wol@darc.de 2628160	no
DF1VK	stationary	Hermann	df1vk@darc.de	no
DF8HL	mobile, stationary	Bernd	df8hl@arcor.de	no
DG1BGS	gate	Stephan	dg1bgs@darc.de 2627261	no
DG2DAD	stationary	Walter	walter.michallek@freenet.de 2624238	no
DG9HR	gate,digi, (on request), mobile	Hartmut	dg9hr@darc.de 2622117	no
DH1TI	gate	Tobias	tobias.haber@t-online.de 2637036	no
DH3SF	mobile, stationary	Tom	at8friedrich@yahoo.com	X
DH5ABC	stationary	Matthias	dh5abc@darc.de	X
DH5DY	wx-stationary	Rainer	rainer@dh5dy.de	no
DH7AHK	stationary	Maximilian	dh7ahk@darc.de 2633204	no
DH8HP	gate, mobile	Hartmut	dh8hp@freenet.de 2624847	no
DJ0CU	stationary	Paul	paulharrison@gmail.com 2622456	no
DJ7UA	mobile, stationary	Mario	dj7ua@darc.de	no
DJ8KL	stationary	Klaus	dj8kl@dj8kl.de	no
DK2EZ LY2EZ	gate, digi, mobile	Uwe	moede@gmx.net	no
DK200	mobile	Reiner	rleuckel@gmx.net dk2oo@darc.de	X

www.robust-packet.net

Manual

dl1nza@gmx.de DL1NZA mobile Hajo no 2620100 **DL2BWO** dl2bwo@darc.de Wolfgang stationary no 2621106 DN4BAS dl2cst@gmx.de **DL2CST** Christian X stationary 2621164 DL3MSZ do1mkh@web.de stationary Karl-Heinz no dl4dp@gmx.de DL4DP mobile Dirk no 2624059 DL5CG@Robust-Packet.net X DL5CG Andreas gate, mobile 2620026 dl5cg@gmx.net kai@krellenberg.de DL5KK mobile Kai-Jürgen no X Edgar edgarschuell@web.de DL5MCQ stationary **DL5MET** X Frank dl5met@qsl.net ex Z38D Peter DL6MAA dl6maa@t-online.de X gate, digi sysop DB0UAL DL8BZ dl8bz@gmx.de mobile Reiner no DL8RCB stationary Anatol dl8rcb@gmx.de no DM4RW Robert dm4rw@arrl.net gate no jtimmann@freenet.de DO1HH stationary Jan no ei5hbb@gmail.com X Eoghan EI5HBB stationary 2720054 f1mhv@free.fr F1MHV X mobile Cyril DF1CHB 2089051 & 2624770 F4ACU mobil Matthieu mlhpub@free.fr no F4AHV mobile Jean-François jf.lorne@free.fr no 6W7RV X F4FON stationary Etienne f4fqn66@gmail.com **GOHIX** g0hix@btopenworld.com stationary Andy no g0vnp@btinternet.com **GOVNP** X mobile Bob g3ueq@pobroadband.co.uk Andrew G3UEQ stationary no 2352366 G4APL Paul stationary no g4irx@nowindows.net G4IRX gate Nick no 2341099

www.robust-packet.net

Manual gm4wmm@btinternet.com **GM4WMM** gate Stuart no 2354052 RPR RMS HB9AK hb9aur@swiss-artg.ch X HB9AUR Martin HB9DDF Christian X hc-retec@gmx.net gate hb9fix@bluewin.ch HB9FIX stationary Hans no 2283059 & 2283122 hb9fkp@gmail.com HB9FKP stationary Patrick no 2283068 **HB9FOU** Jean-Yves stationary no HB9IJE X stationary Dominique 2281026 hb9jaq@uska.ch X HB9JAQ aate Peter 2283066 HB9JBQ mobile Manuel manuel.christen@gmx.ch no **Ernst** hb9mnp@hb9zf.ch **HB9MNP** gate no 2288026 sysop HB9ZF-10 hb9tpr@hispeed.ch HB9TPR stationary Remo no 2288108 & 2288027 iu4dtl@amail.com **IU4DTL** stationary Francesco no 2224053 iw2ohx@iw2ohx.net Marco X **IW2OHX** gate sysop IQ2LB & IR2UFV raffaello.dimartino@kwos.org Raffaello X IZ00WM gate, mobile sysop IR0UGN-10 IZ1GCL maritime mobile Giuseppe menga@polito.it no saanes@broadpark.no LA5VNA Steinar X stationary 2421032 paul.fleming@tradewind35.co.uk M0HPP mobile Gerard 'Paul' X OE1CSC clemens@schmikal.at mobile Clemens no 2321304 CN2CS gate, digi, Max oe3msu@kabsi.at **OE3MSU** no mobile sysop OE3XUR 2323105 oe3mzc@oevsv.at **OE3MZC** X mobile Mike 2323401 & 2323402 oe3rfa@gmail.com OE3RFA mobile Rudolf no M +4366473383744 oe5ern@arrl.net X **OE5ERN** stationary Erwin 2325141 oe7ftj@oevsv.at **OE7FTJ** Wolf X stationary 2327023 OH6DL oh6dl@sral.fi X gate, mobile Wolfgang 2446069 DL5NR

Robust Packet Network www.robust-packet.net

Manual			update 2018-0	000 ED-CR
ON6YF	stationary	Didier	on6yf.didier@gmail.com	no
OZ1PMX 5P1PM	stationary	Peter	oz1pmx@gmail.com	X
PA3DFN	gate	Philip	philip@schroth.cx 2042003	no
PA3ECL	Gate	Rene	pa3ecl@amsat.org 2045062	no
PA3GJX	stationary	Jan	pa3gjx@amsat.org	X
PE0S	stationary	Steven	pe0s@ziggo.nl	no
PE1ITR	stationary	Rob	pe1itr@amsat.org 2045094	x
S51TA	maritime mobile	Ted (Tadej)	tadej.mezek@gmail.com	X
S57RA	stationary	Pavel	open	no
SA7SKY DF8LS	gate, mobile	Helge	helge@sa7sky.net M +46725488404 2407094 & 2622123	X
SM0RWO	stationary	Per	per@crusefalk.se	no
SM5RVH	stationary	Robert	sm5rvh@ssa.se 2405068	X
SM7DSE	stationary	Kent	kent.larsson@stherrestad.nu	no
SM7YBJ	stationary	Johann	hallhuber@hotmail.se	no
SV1UY	stationary	Demetre	sv1uy@yahoo.com 2021008	X

RPR-users outside Europe

[26]		•	CCS7 / DMR-ID [15]	[8]
Callsign	Betrieb	Bemerkungen	email	WLNK
AB1TZ	stationary	Mike	AB1TZ@Robust-Packet.net 3123005	no
AG6IF	gate, stationary	James	ag6if@arrl.net	no
C91PM	gate	Paulo	c91pm@yahoo.com 6430001	х
HS0ZIB G6JFY	gate	Simon	simonluttrell@yahoo.com	X
KB1EJH	gate	Carl RMS sysop (UHF)	kb1ejh@yahoo.com	X
KB7DZR	gate	Scott	open	no
N1ZZZ VQ9ZZ	mobile	Jeremy	n1zzz@arrl.net 3142131	x

www.robust-packet.net

Manual

N3FCX gate **Daniel** dan_n3fcx@yahoo.com no Jeffrey N7TTQ gate open no n8noe@arrl.net N8NOE Jeffrey gate no 3126799 N9ZGE stationary Donald n9zge@arrl.net no py4mab@yahoo.com.br PY4MAB gate Mauricio no 7241018 ua9kdf@inbox.ru X **UA9KDF** gate Igor 2509002 & 2509012 va7dgp@rac.ca **VA7DGP** Donald gate no 3027201 Neil X VE1YZ gate ve1yz@winlink.org RMS sysop ve3xzt@rac.ca VE3XZT Dale gate no 3023434 ve6ab@shaw.ca VE6AB mobile Jerry no 3026074 ve6en@shaw.ca VE6EN gate Andrew no 3026042 VE70I Jean-Claude jc.daehler@gmail.com gate no VK2NA vk2na@hotmail.com stationary David no vk3tbn@yahoo.com VK3TBN gate Peter no w4vpi@excite.com W4VPI **Anthony** gate no 3151668 wa4zko@outlook.com Jeffrey sysop K4KPN-10 X WA4ZKO gate K4KPN 3121023 & 3121024 3121022 **WA5LUY** John wa5luy@arrl.net gate no w6kl@arrl.net W6KL gate David no 3106912 wb2lmv@gmail.com X WB2LMV gate Glenn 1136374